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LE'ITER TO THE EDITOR 

Universal shape ratios for open and closed random walks: 
exact results for all d 
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Essen 1, West Germany 
$ Institut fur Festkorperforschung, Kernforschungsanlage Julich, Postfach 1913, D-5170 
Julich, West Germany 

Received 2 September 1988 

Abstract. The mean asphericities ( A d )  of open and closed Gaussian polymer chains are 
computed exactly and analytically (up to simple quadratures) for arbitrary space dimensions 
d. Excellent agreement is found with existing simulation data for d = 2 ,  3, and 4. Our 
technique can also be used to compute other averages of ratios of fluctuating variables as 
well as extended to include the effects of self-avoiding walk interactions. 

As has been known for several decades, the gross shapes of polymers are not spherical 
(Kuhn 1934, Solc 1971). This anisotropy plays an important role in the interpretation 
of viscous flow and other hydrodynamic phenomena of dilute polymeric solutions. 
(Kramers 1946, Abernathy et a1 1980). Recently several groups of authors have 
undertaken efforts to define and compute universal numbers by which the shapes of 
polymers can be characterised (Bishop and Michels 1985, Theodorou and Suter 1985, 
Aronovitz and Nelson 1986, Rudnick and Gaspari 1986, Bishop and Saltiel 1987, 
Gaspari et a1 1987). Consider a linear polymer consisting of N repeat units 
('monomers') in d dimensions. We assume that on semi-microscopic scales this polymer 
chain can be modelled as an ( N  - 1)-step walk in Etd. Let Rj = (Xjua ; a = 1, . . . , d )  be 
the position vector of the j th  monomer. The shape of a specified conformation {R j }  
of the chain can be conveniently characterised by the invariants of the radius of gyration 
tensor Q with elements 

(Solc 1971, Rudnick and Gaspari 1986). One familiar such invariant is the so-called 
asphericity 

A d tr(Q2) 
d - 1 (tr Q)2 d -  

where 6 means the traceless tensor 

1 
Q = Q - ; 1 tr Q. (3 1 

The quantity Ad ranges from 0 for a spherically symmetric object to 1 for a 
completely elongated chain. Hence the mean asphericity (Ad)  one obtains by averaging 
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Ad = Ad{Rj }  over all conformations { R j }  is an adequate measure of how much its shape 
deviates on average from a spherical one. However, the computation of ( A d )  requires 
the averaging of a ratio of fluctuating variables. This is a non-trivial task even for 
Gaussian (or random walk, RW) chains. In fact, except in the limit d + CO (Gaspari et 
a1 1987), no exact analytical results for ( A d ) R W  have been obtained so far. In the 
existing analytical approaches ( Aronovitz and Nelson 1986, Rudnick and Gaspari 
1986, Gaspari et a1 1987) the above difficulty is usually bypassed by considering 
simpler-albeit less natural-measures of the mean asphericity, such as the ratio of 
averages 

The only exception is the work of Gaspari et a1 (1987) who worked out the first two 
terms of the expansion of (Ad)Rw in powers of d - ’ ,  claiming that an exact analytical 
evaluation of ( A d ) R W  for general d was impossible. 

In this letter we will present exact anal.ytica1 results for ( A d ) R W .  Both open and 
closed chains will be considered. Although detailed results will only be worked out 
for the RW case, our technique can also be utilised in conjunction with perturbation 
theory to compute the E expansion of ( A d )  for self-avoiding walks in 4 - E dimensions 
(Diehl et a1 1989). Furthermore, there exist other interesting universal averages of 
ratios that can be evaluated in the same manner (Diehl et a1 1989). 

Let us write the reduced Hamiltonian of the chain as 

R{Rj} = %RWiRj}  + “ I r { R j }  

Here XRw is the Gaussian part with 

where the summation over j starts at j = 2, if the chain is open, and at j = 1,  if it is 
closed. “Ir stands for two-body and higher interaction terms which need not be specified 
here. The crucial trick of our approach is to use the identity 

x - ~  = lom y e-xy dy 

with x = tr Q. This enables us to cast ( A d )  in the form 
m d - 1  

- ( A d ) =  lo dyy(tr(Q2) e-ytrQ) 
d 

(7)  

Here X y  means the Hamiltonian 

Xy{Rj}  = X + y  tr Q (9) 

Z [  X y ]  = Tr exp( -Xy{Rj } )  the corresponding partition function, and ( )xe, a respective 
average. 
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Writing Xv = 2tRw,y+ Y. we have from (1) and (6) 2 t R w , y { R j }  = I;, hRW,y{Xj,cr}  with 
N 

hRW,y{XJ}=(21)-2 ( x i - X i - l ) 2 + y N - 2  c ( X , - X , ) ’ .  
j = 2 ( 1 )  iP j  

Thus the RW analogue of 2ty is Gaussian, a fact which enables us to compute analytically 
the partition functions and the average required in (8) if V =  0, as well as to compute 
the perturbation series of these quantities by means of Wick’s theorem in the general 
case Y” # 0. In the following we will set Y.= 0. 

We introduce normal coordinates Ey to obtain 

where the eigenfunctions ( p u ( j )  and the eigenvalues E&) depend on the boundary 
conditions. For ring polymers (RP) we have periodic boundary conditions and the 
eigenfunctions are pfjp(j) = N - ’ / 2  exp(i2rrvj/N) with v =0,  *l, *2,. . . , * ( N -  1)/2, 
provided N is uneven. For open chains (oc) the eigenfunctions are identical to those 
of a harmonic chain with free ends and given by cp:zo(j) = N-1/2 and rp:‘(j) = 
(2/ N )  ‘ I 2  cos[ TV( j - +)/ NI for v = 1, . . . , N - 1. The associated eigenvalues are 

In terms of these ~ , ( y )  the required ratio of partition function reads 

The result simplifies considerably in the continuum limit I + 0, N + CO, with NZ2 = L 
fixed, in which one finds 

and 

with y, = 2(yL) 1’2. 

The other average (tr( Q2))re,,,, can be expressed in terms of the propagator 

GI, j’ = ((4’ - X1 - XI )>x,,,, (16) 

by applying Wick’s theorem. In the continuum limit one finds for G(t ,  t ’ )  = 
lim G,=,/1~js=t t /12 the results 
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and 

{$[cosh(yL - T - 7’) + cosh(yL - I T  - T ’ I ) ]  2L 
G‘OC’( t, t ’ )  = 

Y L  sinh(YL) 

- cosh(yL - T) - cosh(y, - T’) + cosh(yL)} (18) 

where T = yLt/ L and T‘ = yLf’/ L. The remaining calculation is straightforward, though 
lengthy and tedious. The final result can be written in the remarkably simple form 

d ( d + 2 )  -- - 

with 

M d  = lom X d t l  sinh-d x dx. (20) 

When these results are expanded in powers of d-’, one obtains 

(A d ) (RP) RW - 5  - l + x d - I  175 +O(d-2) (21) 

(A d )(OC)=2-_L?_d-I+O(d-2) RW 5 175 (22) 

which agrees with the results of Gaspari er a1 (1987) up to a sign error in their equation 
(3.44). In table 1 we list the explicit results for ( A d ) R W  with d = 2,3,  and 4 and compare 
them with those obtained by Bishop and Saltiel (1988) through numerical simulations. 
The agreement is very good. 

Table 1. Comparison between our exact results and the simulation results by Bishop and 
Saltiel (1988). Here e( . ) is the Riemann zeta function. 

( A  )(oc) (A‘,)kRwp’ d RW 

d Exact Simulations Exact Simulations 

2 (8/3) -25(3) = 0.2625. . . 0.279i0.014 [10-75(3)]/4=0.3964.. . 0.411 *0.031 
3 &Il l  -27[73(3) -%5(5)1) 0.252 * 0.020 0.394 27 . . . 0.390* 0.004 

4 g { f - 2 0 [ 5 ( 3 ) - 5 ( 5 ) ] } = 0 . 2 3 6 9 . .  . 0.234*0.009 4-35(3)  =0 .3937. .  . 0.388*0.014 
= 0.2464. . . 

We are indebted to 0 Jagodzinski for checking parts of the arithmetic. This work was 
supported by Sonderforschungsbereich 237 of the Deutsche Forschungsgemeinschaft. 
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